Harvesting traffic-induced vibrations for structural health monitoring of bridges

نویسنده

  • K Najafi
چکیده

This paper discusses the development and testing of a renewable energy source for powering wireless sensors used to monitor the structural health of bridges. Traditional power cables or battery replacement are excessively expensive or infeasible in this type of application. An inertial power generator has been developed that can harvest traffic-induced bridge vibrations. Vibrations on bridges have very low acceleration (0.1–0.5 m s−2), low frequency (2–30 Hz), and they are non-periodic. A novel parametric frequency-increased generator (PFIG) is developed to address these challenges. The fabricated device can generate a peak power of 57 μW and an average power of 2.3 μW from an input acceleration of 0.54 m s−2 at only 2 Hz. The generator is capable of operating over an unprecedentedly large acceleration (0.54–9.8 m s−2) and frequency range (up to 30 Hz) without any modifications or tuning. Its performance was tested along the length of a suspension bridge and it generated 0.5–0.75 μW of average power without manipulation during installation or tuning at each bridge location. A preliminary power conversion system has also been developed. (Some figures in this article are in colour only in the electronic version)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Earth Pressure behind an Integral Bridge Abutment and Comparison with that behind a Conventional Bridge Abutment under Traffic Loads

 Integral bridges are gaining increased popularity because of both economic and fast construction associated with the omission of bearing supports and expansion joints. In the present study the cyclic earth pressure behind integral bridge abutments under traffic surcharges are investigated and compared with that induced behind the abutment of  conventional bridges (with isolated deck and abutme...

متن کامل

Bridge Structural Condition Assessment Based on Vibration and Traffic Monitoring

A stochastic model of traffic excitation on bridges is developed assuming that the arrival of vehicles traversing a bridge modeled as an elastic beam follows a Poisson process, and that the contact force of a vehicle on the bridge deck can be converted to equivalent dynamic loads at the nodes of the beam elements. The parameters in this model, such as the Poisson arrival rate and the stochastic...

متن کامل

Energy Neutral Operation of Vibration Energy-Harvesting Sensor Networks for Bridge Applications

Structural monitoring of critical bridge structures can greatly benefit from the use of wireless sensor networks (WSNs), however energy harvesting for the operation of the network remains a challenge in this setting. While solar and wind power are possible and credible solutions to energy generation, the need for positioning sensor nodes in shaded and sheltered locations, e.g., under a bridge d...

متن کامل

Structural Health Monitoring of Bridges Via Energy Harvesting Sensor Nodes

This paper deals with the application of novel sensing technologies to an existing Structural Health Monitoring (SHM) system for bridges. A vibration based SHM algorithm already in use to detect the structural performance degradation of a suspension highway bridge is modified to investigate the feasibility of replacing traditional wired accelerometers with state of the art wireless energy-harve...

متن کامل

Deflection Measurement of Masonry Arch Bridges with Tall Piers: Case Study of Shahbazan Bridge

A common practice for detailed assessment of masonry bridges is to use recorded deflection signature of mid-span of such structures due to predefined loading schemes. However, measuring the deflection of bridges with tall piers or those situated over deep valleys introduces certain difficulties, since common deflection-meters require a reference point relative to which the measureme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011